Describing Motion Verbally with Distance and Displacement
Read from Leson 1 af the 1-D Kine matics dupter at The Physics Claswoom:

Mor Connetion: Kinemalik Concepts subhevels 1 and 2

Vectors vs. Scalars
 the two columi heding.

Distance vs. Displacement

5. If the stove stakment is true, then describe anexample of sucha motion. It the atowe tutument is

The distance-time graphs below represent the motion of a car. Match the descriptions with the graphs. Explain your answers.

Descriptions:

1. The car is stopped.
2. The car is traveling at a constant speed.
3. The speed of the car is decreasing.
4. The car is coming back
(A.

Graph A matthes description ___ because

Graph B matches description ____ because \qquad

Graph C matches description _ because \qquad

Graph D matches description \qquad
\qquad
$35 \mathrm{~m} / \mathrm{s}$ in the opposite direction. If the
exerted on it during this period. (9 kN)
$F=\frac{m\left(v p-v_{i}\right)}{t}=\frac{0.150(35-25)}{001}=9000 \mathrm{~N}$
$(30.0)(3.0)+10(0)=(40.0) \mathrm{V}$

b. Then the ball rolls across a level table where it collides inelastically with a stationary toy car of mass 1.5 kg . What is the velocity of the clay-car combo? $\rightarrow 1.21=2.0 \mathrm{~V}$

$$
(.50)(0.42)+0=(.50+1.3) v
$$

c. The clay-car combo then falls off the 125 m high table. What is the velocily of the clay-car combo pust before it hits the floon?

